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ABSTRACT

Nonlinear evolution equation for Alfvén waves, propagating in streaming
plasmas with nonuniform densities and inhomogeneous magnetic fields, is
obtained by using the reductive perturbation technique. The governing equation
is a modified derivative nonlinear Schrodinger (MDNLS) equation. Numerical
solution of this equation shows that inhomogeneities exhibit their presence as
an effective dissipation. The spatio-temporal evolution, of long wavelength
Alfvénic fluctuations, shows that the wave steepens as it propagates. High
frequency radiation is also observed in our simulations. Unlike coherent Alfvén
waves in homogeneous plasmas, which can become non-coherent /chaotic only
in the presence of a driver, MDNLS evolves into non-coherent /turbulent state
without any driver, simply due to inhomogeneities. This clearly indicates that
the integrability property of the DNLS, which allows coherent solitary solutions,

is destroyed by inhomogeneities.

Subject headings: Turbulence, Solar Wind, Alfvén waves, Sun : Solar - terrestrial

relations
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1. Introduction

Large amplitude Alfvén waves have been observed in a variety of plasmas such as the
solar wind, planetary bow shocks, interplanetary shocks, the solar corona, environment of
comets etc. (Belcher and Davis 1971; Scarf et al. 1986). Alfvénic turbulence has been
observed in the solar wind (Burlaga, 1983; Bavassano et al., 1982) as well as in the vicinity
of comets (Tsurutani and Smith, 1986). Recently Marsch and Liu (1993) and Tu and
Marsch (1995) have reported some observations of Alfvénic intermittent turbulence in the

solar wind.

Implications of the existence of large-amplitude Alfvén waves in many cosmic plasmas
have been investigated. Some of these examples include turbulent heating of the solar
corona, coherent radio emissions, interstellar scintillations of radio sources, generation of
stellar winds and extragalactic jets etc. Pettini et al. (1985) had carried out numerical
simulations to look into the turbulent heating of the solar corona by these waves. Spangler
(1991) had investigated Alfvénic turbulence in connection with interstellar scintillation of
radio sources. Alfvén waves were shown to be the potential source for generation of stellar

winds and extragalactic jets by Jatenco-Pereira (1995).

A number of MHD models have been suggested for the solar-wind turbulence (see
recent review by Tu and Marsch, 1995 and references therein). Most of these models
do not include dispersive effects and are restricted to homogeneous plasmas. A few of
these models, which include inhomogeneities, are based on WKB theory. The latter
however is incompatible for the studies of turbulence that involves a variety of different
scales. Grappin and Velli (1996), in their expanding box model of the solar wind. however
included non-WKB processes due to expansion. They showed the important role plaved by

compressible effects in the evolution of solar wind turbulence.

To account for the dispersive nature of plasmas, one has to use Hall - MHD equations.
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For finite but not very large amplitude Alfvén waves, the latter can be reduced to a single
evolution equation, namely the DNLS equation (Kennel et al. 1988; Buti 1992, 1997). Hada
et al. (1989) carried out an in-depth study of the DNLS equation and showed that the DNLS
offers a variety of exact localized stationary solutions e.g., periodic envelope modulations;
monochromatic waves; hyperbolic solitons; and algebraic solitons. However hyperbolic
soliton solutions are found to be the most stable ones (Nocera and Buti, 1998). Ovenden et
al. (1983) and Dawson and Font4n (1990) had proposed Alfvén soliton gas models for MHD
turbulence in the solar wind. Dynamical evolution of nonlinear Alfvén waves, using the
DNLS equation, has been studied by many investigators (Ghosh and Papadopoulos, 1987;
Kennel et al. 1988; Buti 1992, 1997; Verheest and Buti, 1992). Ghosh and Papadopoulos
(1987) and Hada et al. (1990) had included dissipative effects whereas kinetic effects were
incorporated into the DNLS equation by Rogister (1971), Mjolhus and Wyller (1986, 1988)
and Spangler (1989, 1990). Ghosh and Papadopoulos (1987) had studied the problem of
generation of Alfvénic turbulence by numerically solving the driven dissipative DNLS by
means of a spectral method. Hada et al. (1990) however, addressed the problem of Alfvénic
chaos by studying the temporal evolutién of the driven dissipative DNLS equation. They
also included the discussion of slow, fast and intermediate shocks based on this equation.
Following Hada et al. (1990), recently Chian et al. (1998), have suggested that Alfvénic
intermittent turbulence, observed in the solar wind, could be generated by temporal chaos
of driven Alfvén DNLS solitons. Medvedev et al. (1997) showed that inclusion of heat flux.
modeled as ion-Landau damping, in the Kinetic Nonlinear Schrédinger (KNLS) equation
(Medvedev and Diamond, 1996), 1eads to rotational discontinuities. All these investigations
however, are restricted to homogeneous systems whereas most of the plasmas, where
nonlinear Alfvén waves have been observed (Belcher and Davis 1971; Scarf et al. 1986),

have inhomogeneous densities as well as magnetic fields.

By using the reductive perturbation method, Buti (1991) had rederived the governing
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evolution equation for these waves in inhomogeneous plasmas. It was shown that the
inhomogeneities lead to acceleration (deceleration) of solitary Alfvén waves depending upon
the direction of propagation vis-a-vis density gradients. In this analysis, even though no
explicit assumption about homogeneity of the magnetic field was made but because of the

slab geometry used, implicitly the field considered was homogeneous.

In the present paper, we have removed this implicit restriction by incorporating
spherical geometry. The evolution equation is rederived for inhomogeneous plasmas with
arbitrary inhomogeneities. The evolution equation, in this case, turns out to be a modified
DNLS (MDNLS) equation (see section. 2). Like DNLS equation, MDNLS is also not
valid in regions with plasma 8 ~ 1 and magnetic field fluctuations B ~ B,. For solar
wind closer to the sun where outward propagating Alfvén waves are generated, 8 < 1 and
magnetic field fluctuations are not of the order of the ambient magnetic field. So, closer
to the sun the MDNLS very well describes the evolution of finite-amplitude Alfvén waves.
Numerical solution of the MDNLS equation, with solar wind parameters, exhibits features
like wave steepening, emission of high frequency radiation, turbulent power spectra etc.
The predicted power spectra are found to have spectral indices which increase with the
heliocentric distances as observed in the solar wind turbulence (Belcher and Davis 1971;
Bavassano et al. 1982). We also see a break-point in the frequency spectra. The break-point
moves towards lower frequency with increasing heliocentric distance. In homogeneous
plasmas, one can expect such an evolutionary behavior of Alfvén waves only when they are
driven (Hada et al. 1990, Buti, 1992; Nocera and Buti, 1997; Buti and Nocera, 1999) or
when they get coupled with the density fluctuations (Hada 1993; Buti et al. 1998). In the
latter case nonlinear Alfvén waves are instead governed by a set of two nonlinear partial
differential equations (Hada, 1993). Roychoudhury et al. (1997) studied the stability of this
set of equations by means of Painléve analysis and showed that this coupled system is not

an integrable system and thus no soliton solutions are possible. Buti et al. (1998) adapted
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an alternative approach and studied evolution of the Alfvénic wave packets by means of
Hall-MHD simulations. They found that the DNLS soliton is disrupted and evolves into a
wave train. The disruption time is found to scale as B4, where B, is the amplitude of the

soliton (Velli et al., 1999).

The obvious conclusion one can draw, from the analysis presented here, is that
inhomogeneities in density and magnetic field destroy the integrability properties of the
DNLS equation that are solely responsible for coherent soliton solutions. Consequently
coherent structures like solitons, which are exact solutions of the DNLS equation, evolve

into noncoherent/turbulent structures characterized by power-law spectra.

2. EVOLUTION OF NONLINEAR ALFVEN WAVES

The nonlinear equations governing Alfvén waves propagating in the radial direction
are the two-fluid equations and the generalized Ohm’s law (Kennel et al. 1988; Buti 1990,
1991):

0
5§—|—V-(pv)=0, (la)
pf% — _Vp+JxB, (18)

and

OB 1
S =V x (va)—;(VxB)xB}. (1e)
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In eq.(1), B is normalized to By(r = ry), p to po(r = ro), v to Vao = By(r =
ro)/[4mpo(r = 10)]'/2, t to inverse of Qip = Q(r = ry), the ion cyclotron frequency and [ to

Viao/So; 1o is simply some reference point.

We would like to point out here that the set of equations (1) would not be valid for
systems with 3 (ratio of kinetic energy to magnetic energy) of order of unity because
in that case kinetic effects become important. Moreover for B ~ 1, coupling between
Alfvén waves and ion acoustic waves becomes significant (Hada, 1993). On using equations

(1) in spherical co-ordinates and assuming no variations along ¢ and ¢ directions i.e.,

0/00 = 0/0¢ = 0, eqgs. (1) reduce to:

pv.) =0, (2a)

T i R (26)
dV_L _ B,- 9] )
&~ 7 o BL) 2e)
and
OB, 10 19 [Be, &(B.r) .
W— - ;-B_T(Brv.l_ - vrB.L) + ;57 [ ’f‘p X 87‘ :I b (2([)

where 7 is the radial distance, By = (B, By), vy = (vg,v,), and B2 = (B} + B}). For

pressure, we use the adiabatic equation of state i.e., pp™ = const. In order to satisfy eq.(2a)
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and the induction equation i.e., div By = 0, the equilibrium density po(r) and the magnetic

field Bo(r) must satisfy the conditions:

Bo(r) r* = const (3)

and
po(r) U(r) r* = const. (4)
For weakly nonlinear systems, we can use reductive perturbation scheme to derive the

evolution equation from Egs.(2). Following the procedure outlined in Buti(1991), we use

the following stretchings:

in e itye]

In Eq.(5) € is the stretching parameter and V/(r) is the phase velocity of the Alfvén wave

which is given by

V(r) = U(r) + 22 (6

% (r)

In Eq.(6), U is the equilibrium streaming plasma velocity.



~9-

On using the expansions for density, velocity, pressure and magnetic field appropriate
to Alfvén Waves ( cf. Buti 1991), for a spherically symmetric system, we obtain the
following evolution (MDNLS) equation:

0B  3U B 3 /.,

wmtrve Pty o e (VYY) o
(V- U) D (gipp iV -UP®B _

tTRm VA= s e BB+ 0

2 V3 Bo(n) 92

where B = (B +i By), B(n) is the plasma B, i.e., the ratio of kinetic pressure to magnetic
pressure and Bo(n) is the ambient magnetic field. In deriving Eq. (7), we have taken
wave propagation as well as the ambient magnetic field along the radial direction and
have neglected fifth order nonlinear terms. This equation, however, is valid for arbitrary
inhomogeneities. We may note that for nonstreaming uniform plasmas i.e., for U = 0 and
po(r) = 1,V — 1 and Eq. (7) reduces to the well known DNLS equation (Kennel et al.
1988), which gives an exact soliton solution. It is interesting to observe that this modified
DNLS (Eq (7)), besides having additional two linear terms in B, has variable co-efficients
for nonlinear and dispersive terms. Because of these complicated variable co-efficients, it is
not possible to find an analytical solution to Eq. (7) and one has to look for its numerical
solution. We have done this on the assumption that solving a single nonlinear partial
differential equation (pde) is much simpler than handling a set of pdes, e.g., Hall MHD
equations, that requires a simulation code with expanding box. We are now persuing the

latter course and hope to be reporting these results in the near future.
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3. NUMERICAL COMPUTATIONS

For numerical solution of eq.(7), we use the spectral collocation method. We rewrite

this equation as,

B 0 , 9?
Fo  FVB -+ an(n) (1B B) + i) 55 =0 (5

Since eq. (8) has temporal and spatial variables interchanged, we write the approximate

solution for B as a Fourier expansion in time instead of space, namely

N-1
B(¢,n) = k_ZN be(m)e™ M, (9)

Note that B is assumed to be periodic in time, with period T and frequency A = 27k/T.

The spectral collocation (or pseudospectral) method requires introduction of collocation
points (grid points) &;. For evaluation of the cubic nonlinear term of eq.(8), we use the
padding method (alternatively known as 3/2 rule) for dealiasing (Conuto et al. 1988).
According to this scheme, the Fourier transform for the nonlinear term can be represented
by,

M-1
|B(&,n)|*B(&,n) = ZM gr(n)e™ M, (10)
| —

In order to be sure that aliasing errors are not introduced by this form of approximate
solution, summation index M must be greater than 3N /2 ; N is the summation indgx used
in Eq.(9). This simply means that nonlinear term is calculated by using larger number of
grid points compared to the number used in the original expansion for B in Eq. (9). Thus
in Eq.(9), b = 0 for N < |k| < M i.e., high frequency harmonics of by (for |k| > N only) are

neglected. This effectively means introduction of some artificial dissipation in the system.

The standard Galerkin version of the weighted residual method is used for discretisation,
with exponential weighting functions Wy () = exp(—iAk€). In other words semidiscrete

system of equations is obtained by using the relation
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[ REmWi@pde =0, k=-N..,N-1, (1)

where R(£,n) is the residual of the DNLS equation, namely

& [0, |
Ben) = X 32+ s —iendasn(n) o2t o, 12

Taking this weighted residual integration, we obtain the system of ordinary differential
equations for the coefficients bx(n), which can be solved using either the second order
Adams-Bashforth predictor ~ Adams-Moulton corrector pair, or the adaptive step size
iterative scheme with accuracy check. The accuracy check in the second method assures
that small scale structures appearing in the solution have physical origin, rather than being

numerical artifacts.

We do not need to introduce any artificial dissipation for the numerical solution of
MDNLS. In our case, inhomogeneous terms formally play the role of effective dissipation.
Moreover, the iterative scheme of dealiasing, that we have used for calculation of
nonlinearity, keeps the soliton solution of the conservative homogeneous DNLS unchanged
for much longer distances than reported here. This could alternatively be achieved even

without dealiasing, but with a fine enough grid.

As mentioned earlier, the problem of wave propagation is solved as an evolutionary
problem in space. For this purpose, we assume that there is an influx of waves at one end
of the interval (e.g., closer to the Sun in case of solar wind plasma) and the waves are

propagating outward from the Sun. The influx is assumed periodic in time.

For numerical solution, we have considered two cases. 1) Evolution of an initial Alfvén
soliton which is an exact solution of DNLS equation and 2) evolution of an amplitude-
modulated circularly polarized wave. The reason for picking up the DNLS soliton solution

as the initial condition is the following: Locally in the regions closer to the sun, where
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Alfvén waves are generated, DNLS is a good representation of Alfvén waves. Moreover ope
of the basic properties of any evolution equation, e.g., DNLS equation,' which can be solved
exactly by means of the Inverse Scattei‘ing Transform method (Kaup and Newell, 1978),
is to transform any localized initial condition to a soliton solution. Dawson and Fontan
(1988) numerically solved the DNLS equation with an initial modulated Gaussian packet

and confirmed its decay into soliton solution. For the soliton case we take,

Bios €09

B (¢ ro) = coshiZ g (13)
with
b = (€ ~ L/2) Bh, /(29), (14)
3, 4, .
6 (&) = gtan (sinh ) (15)
and
§d = 2 1 |4 U (16
=y 1=-08V-10. )

Bmae in Eq.(13) is the amplitude of the initial soliton normalized to B, (ro) and L is the
domain length. We would like to point out that the solution given in Eq.(13) is different
than the one we had used earlier (Verheest and Buti 1992; Nocera and Buti 1996; Buti et
al. '1998). In the soliton solution (Mjolhus 1978), there are two arbitrary constants xo and

vo. Barlier we had taken vy = 0 and now for Eq.(13) o has been taken to be zero.

For Fig.1 we have taken the reference point, 7o = R, (R, being the solar radius). The

other simulation parameters chosen are : B (R;) = 0.01.and 7o Qo / Vao = 10° at rg =
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R,. Fig.1 shows the variation of B,.,(r) / By (r) with heliocentric distance for different
initial conditions. In all the three cases, we see that magnetic field ﬂﬁctuations increase
with increasing r. This is in agreement with the observations (Klinglesmith 1997). It is
interesting to note that despite B,,,, decreasing with increasing heliocentric distance (see
Fig.2), the ratio Bpaz(r) / Bo (r) goes up. So an obvious conclusion one can draw is that

Bo(r) decreases much faster compared to Bz (r).
EDITOR: PLACE FIGURE ?? HERE.

Fig.1

Fig.2 (corresponding to reference point 7o = Ry = 0.1AU ) shows time evolution
of the field starting with soliton amplitude B,,,, = 0.036 Bo(Ro), Uy = 1.5 V4o and
B (Ro) = 0.05. We find that amplitude of the soliton goes down as the wave propagates
away from the sun. This shows that inhomogeneities in density and magnetic field are
providing the source for physical dissipation. Similar dissipative effects of inhomogeneities,
in connection with modulated ion-acoustic waves, were reported by Mohan and Buti (1979).
We also see the steepening of the wave and the high-frequency radiation on the leading
edges. The high-frequency radiation has frequencies larger than the Alfvén frequency but
much smaller than whistler frequencies. Sf;eepening is found to increase with increasing

heliospheric distances. The corresponding spectra for the field luctuations are shown
EDITOR: PLACE FIGURE ?? HERE.

Fig.2

in Fig.3. Note the break in the power spectra; the break-point moves towards lower

frequencies with an increase in the heliocentric distance. This trend is similar to the one
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shown by Helios observations (Bavassano et al.1982). Moreover, we find that the spectral
index (@) increases from 1.6 to 2.6 with an increase in the radial distance from 0.5 — 0.94U.
The observed values of «, according to Mariner 5 (Belcher and Davis 1971) and Helios 1

and 2 (Bavassano et al. 1982) data range between 1.2 - 2.2.
EDITOR: PLACE FIGURE ?? HERE.
Fig.3
EDITOR: PLACE FIGURE ?? HERE.

Fig.4

Ideally one would like to see the evolution of Alfvén waves starting from the photosphere
all the way to 1AU but to achieve this one faces some practical difficulties. If one uses one
single scale for the numerical solution of the MDNLS in the range 1R, < r < 1AU, the
computer time is formidably large. For this reason, we solved the MDNLS by using two
different scalings - one closer to the sun and the other one for regions closer to 1AU, by
taking appropriate solar-wind parameters for the two regions. The qualitative behavior in
the two regions was found similar. Observations are available only for r > 0.3AU; so, we
are not reporting the numerical results obtained for the region near the photosphere. The
difference in the observed values of o and the ones shown in Fig.3, could be because we
have taken the ambient magnetic field B, as a function of r only i.e., By = By(r). Closer
to 1AU, this is not a very good approximation. In future we would consider a more general
case of By = By(r,8) by incorporating cylindrical symmetry. To determine the cause of this

difference, we would also incorporate kinetic effects in our model.

For the second case, we consider an amplitude-modulated circularly polarized wave.

The reason for picking up an amplitude-modulated wave rather than a purely circularly
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polarized wave is simply because the latter is an exact solution of DNLS and it does not
undergo any nonlinear evolution.The modulated initial wave profile, in this case, can be
represented by two initially excited harmonics in the expansion for B of Eq.(9). For left
hand circularly polarized (LHP) wave, we take these two harmonics as k = —1 and —2

(Medvedev et al. 1997). Thus in accordance with Eq.(9), for LHP wave, we take

297t 47t
ex
Tmaz‘ p Tmax

with Thee = 19200 7 Q' The evolution of Alfvén waves in this case is shown in Fig.4.

B(Ro, t) = 0.01 [exp

I, (17)

The evolution in this case is much slower compared to the soliton case. High frequency
radiation is seen only for r > 0.9 AU. The spectra (not shown) also do not evolve into

power spectra during the periods considered here.

4. CONCLUSIONS

Large amplitude Alfvén waves propagating radially in plasmas, with inhomogeneous
densities and magnetic fields, are governed by the MDNLS equation. Numerical solution of
this equation, for the case of solar wind, shows that the Alfvén soliton evolves with space
and time and shows features e.g., evolution of magnetic field fluctuations, power spectra,
wave steepening and emission of high-frquency radiations. We observe a cut-off in the power
spectra; the cut-off is found to move towards lower frequencies with increasing heliocentric
distance. Moreover the spectral index o goes up with the helicentric distance. The spectral
indices of the predicted power spectra from our model range between 1.6 - 2.6 wheras for
the same frequency range the observed spectral indices from Mariner 5 (Belcher and Davis
1971) and Helios 1 and 2 (Bavassano et al. 1982) data range between 1.2 - 2.2. In order

to look for better quantitative agreement of a with the observed spectral indices, we plan
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to use cylindrical geometry which is a better approximation closer to 1AU. To overcome
the shortcomings of DNLS/MDNLS model used in the present investigation, we would also
include kinetic effects as well as coupling of magnetic field and density fluctuations. For our
numerical solutions herein, we have used the solar wind parameters but the model is very
general and can be applied to other cosmic plasmas also. We also plan to extend this model
to driven dissipative Alfvénic systems to investigate the problem of intermittent turbulence.

These results will be reported in a forthcoming paper.

We emphasize that even though we initially start with a coherent structure like the
DNLS soliton, because of inhomogeneities embedded in our MDNLS equation, it evolves
into a non-coherent/turbulent (not fully developed) state. This could be a good reason for
the non-existence of Alfvén solitons in the solar wind. The complete integrability property |
of the DNLS is clearly destroyed by these inhomogeneities. Following the mathematical
analysis of Roychoudhury et al. (1997), we plan to do the Painléve analysis of the MDNLS

equation to determine its stability properties.

The research conducted at the Jet Propulsion Laboratory, California Institute
of Technology, was performed under contract to the National Aeronautics and Space
Administration. BB and GSL are thankful to the National Research Council fot financial
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Fig. 1.— shows variation of Bpeq(r) / By (r) with heliocentric distance r / R, for 3 cases
with B (ro) = 0.01. and ro Oy / Vao = 10°. For case 1, B,,,, = 0.626 By (ro) and T,
= 64000 7 Q'; case 2, B, = 0.039 B, (ro) and Tinee = 64000 7 Q5 and case 3, B,.,, =
0.014 By (ro) and Thee = 192000 7 Q5

Fig. 2.— shows evolution of B / B, (ro) with t for Bpa, (Ro) = 0.036, Ry = 0.1 AU. [/, =
1.5 Vao and 8 (Ry) = 0.05. Curves labelled 1,2, 3, 4 and 5 correspond to » = 0.1 AU. 0.35
AU, 0.5 AU, 0.7 AU and 0.9 AU. .

Fig. 3.— shows power spectra for heliospheric distances 0.3 AU, 0.5 AU, 0.7 AU and 0.9

AU. The parameters used are same as for Fig.2.

Fig. 4.— shows the evolution of B / Bo (Ro) with t for initially circularly polarized wave for
heliospheric distances 0.1 AU, 0.7 AU, 0.9 AU and 1.05 AU. The parameters used are same

as for Fig.2.
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